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When we run our fingers over the surface of an object, we acquire
information about its microgeometry and material properties. Tex-
ture information is widely believed to be conveyed in spatial
patterns of activation evoked across one of three populations of
cutaneous mechanoreceptive afferents that innervate the finger-
tips. Here, we record the responses evoked in individual cutaneous
afferents in Rhesus macaques as we scan a diverse set of natural
textures across their fingertips using a custom-made rotating drum
stimulator. We show that a spatial mechanism can only account for
the processing of coarse textures. Information about most natural
textures, however, is conveyed through precise temporal spiking
patterns in afferent responses, driven by high-frequency skin vibra-
tions elicited during scanning. Furthermore, these texture-specific
spiking patterns predictably dilate or contract in time with changes
in scanning speed; the systematic effect of speed on neuronal
activity suggests that it can be reversed to achieve perceptual
constancy across speeds. The proposed temporal coding mecha-
nism involves converting the fine spatial structure of the surface
into a temporal spiking pattern, shaped in part by the mechanical
properties of the skin, and ascribes an additional function to
vibration-sensitive mechanoreceptive afferents. This temporal mech-
anism complements the spatial one and greatly extends the range of
tangible textures. We show that a combination of spatial and
temporal mechanisms, mediated by all three populations of
afferents, accounts for perceptual judgments of texture.
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Our exquisite tactile sensitivity to surface texture allows us to
distinguish silk from satin, or even good silk from cheap

silk. However, the neural basis for our ability to identify in-
dividual textures has never been investigated. Natural textures
can comprise very fine textural features, on the order of micro-
meters, but also coarser ones on the order of millimeters. Sur-
face features sized over many orders of magnitude must then be
fused to yield a unitary percept of texture. At the coarse extreme
of this range, Braille dots and gratings have been shown to be
encoded in the spatial pattern of activation elicited in slowly
adapting type 1 (SA1) afferents (1–4), which densely innervate
the primate fingertip. Specifically, the spatial layout of surface
features is reflected in the spatial layout of the SA1 response
across the sensory sheet, so information about texture can be
read out from this neural image, a mechanism that draws an
analogy to vision. The most compelling evidence implicating this
spatial mechanism in texture perception stems from an elegant
series of studies that demonstrate that one of the major per-
ceptual attributes of a textured surface, its roughness, can be
predicted from the spatial pattern of activation it elicits in SA1
afferents (1–3). However, most natural textures comprise fea-
tures that are too fine to be resolved through a spatially modu-
lated neural signal given the limits set by the innervation density
(5) and spatial filtering (6) of the skin (Fig. S1). Behavioral
results suggest that the tactile perception of fine texture relies on
the transduction and processing of complex, high-frequency, and

texture-specific vibrations (in the range of 50–800 Hz) that
propagate over the skin when we scan a surface (7–10). Such skin
oscillations would predominantly excite two other populations of
afferents, namely rapidly adapting (RA) and Pacinian (PC) fibers
(11–13), whose role in texture perception has heretofore never
been demonstrated and has, in fact, been called into question (3,
4). Not only does this vibration-mediated mechanism of texture
perception implicate different afferent populations, it also implies
a different coding mechanism for texture, one that relies on
temporal rather than spatial structure in afferent responses.

Results
To investigate how texture is encoded over the range of tangible
surfaces, we recorded the activity evoked in SA1, RA, and PC
afferents of Rhesus macaques by 55 diverse textured surfaces,
delivered to their fingertips using a custom-built rotating drum
stimulator. Stimuli ranged from very coarse, such as (Braille-
like) embossed dot patterns and corrugated paper (with element
sizes on the order of millimeters), to very fine, such as satin and
nylon (with elements sized in the tens of micrometers). Many of
the textures consisted of elements that span the range of tangible
surface elements. To characterize the neural image conveyed by
afferents, we computed spatial event plots (SEPs), which are re-
constructions of the spatial representation of a stimulus across
a population of afferents of a given type (14). Consistent with
previous results, the spatial structure of coarse surfaces is faith-
fully encoded in the spatial pattern of activation in SA1 afferents
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(Fig. 1 A and B). However, the responses of these afferents to
finely textured surfaces seem to contain little to no meaningful
spatial structure.

Spatial Mechanism for Texture Coding.Testing the prevailing theory
of texture coding at the somatosensory periphery, we assessed
quantitatively the extent to which surface microstructure is
reflected in the spatial pattern of activation across SA1 afferents.
First, we found that SA1 afferents respond strongly to coarse
textures, but only weakly or not at all to finer ones (Fig. 1C), which
casts doubt on their putative role in fine texture processing. Sec-
ond, although SA1 responses to coarse textures—with spatial
periods greater than about 1 mm—are spatially structured,
responses to finer textures are no more spatially structured than
would be expected by chance (Fig. 1D). Third, the spatial layout of
the SA1 response matches that of the stimulus for coarse but not
fine textures (Fig. 1E;SIMaterials andMethods), so the structure in
the neural image is not congruent with the microstructure of the
surface itself. In summary, a spatial mechanism, mediated by SA1
afferents, is viable only for very coarse textures, with elements on
the order of millimeters, and fails to account for the coding of
texture over awide rangeof element sizes. (Note that coarse textures
were purposefully overrepresented in the sample used for the
spatial analysis.) Although the spatial acuity of the RA signal is

lower than is its SA1 counterpart (15, 16), RA afferents also
densely innervate the fingertip skin (5) and thus might convey
textural information spatially.We analyzed the spatial structure of
SEPs derived from RA responses using the same approach used
for SA1 afferents and found that, as expected, these afferents
produce less spatially structured responses than do SA1 afferents
(Fig. S2). Finally, PC afferents have very large receptive fields and
do not innervate the fingertip densely enough to convey a struc-
tured spatial image at the relevant scales.

Temporal Mechanism for Texture Coding. Behavioral studies have
suggested that texture-elicited vibrations may play an important
role in texture perception (7–9, 17). Paired behavioral and
neurophysiological studies have shown that the intensity of tex-
ture-like skin vibrations is encoded in the strength of the
responses evoked in the three populations of mechanoreceptive
afferents (12). Furthermore, the frequency composition of the
vibrations is encoded in millisecond precision temporal spiking
patterns, and this temporal patterning plays an important role in
determining how skin vibrations are perceived (13). In light of
these previous findings, we considered the possibility that texture
information is not encoded in the spatial image, but rather in the
time-varying responses of afferents, particularly of RA and PC
fibers, as these two afferent populations are highly sensitive to
skin vibrations. Examination of the responses of mechanore-
ceptive afferents to scanned textures shows that the responses
are highly repeatable and temporally patterned (Fig. 2). We
therefore sought to determine whether these could mediate
texture perception. First, we found that, although SA1 afferents
respond only weakly (<10 Hz) to most textures, RA and PC
fibers respond robustly to most, if not all, of them (Fig. S2A; Fig.
3A). Second, RA and PC responses to textures are significantly
more temporally structured than would be expected by chance
(Fig. S3A; Fig. 3B). Third, the frequency composition of afferent
responses reflects that of the oscillations elicited in the skin
during texture scanning (measured using a laser Doppler vibr-
ometer, Fig. S3B, Fig. 3C; SI Materials and Methods). In fact,
afferent responses are more closely associated with the oscil-
lations elicited in the skin than they are with the surface mi-
crostructure itself (measured using a laser microscope; Fig. S4;
SI Materials and Methods). Indeed, the skin enhances some fre-
quency components and not others (18, 19), which highlights the
importance of measuring the skin response in studying texture
perception. Although PC responses mirrored texture-elicited
vibrations across the full range of textures, the match between
skin vibrations and RA responses was stronger for coarser tex-
tures (Fig. 3 D and E). Fourth, spike timing conveys sufficient
information to identify individual textures and does so with high
temporal precision, with optimal resolutions of 4 ms for RA
fibers and 2 ms for PC fibers (Fig. 4A) (13). Indeed, textures can
be classified accurately based on the responses of small pop-
ulations of RA or PC afferents at their optimal resolutions (83%
with 7 PC fibers; Fig. 4B), suggesting that the whole afferent
population (on the order of tens or hundreds of activated units)
conveys sufficient information to mediate texture identification.
Moreover, although RA and PC afferents convey texture in-
formation across the range of element sizes, SA1 responses to all
but the roughest textures are uninformative (Fig. 4B; Fig. S5). In
summary, high-precision temporal spiking patterns, particularly
in RA and PC fibers, follow the oscillations produced in the skin
during texture scanning and convey sufficient information to
mediate texture perception.

Effect of Scanning Speed on Texture-Specific Temporal Spiking Patterns.
For nerve fibers to convey unambiguous information about tex-
ture, some aspect of their responses must be preserved across
scanning speeds. Indeed, our ability to discriminate different tex-
tures is mostly independent of speed (20), whereas afferent
responses to texture are not. We found that interspike intervals
of afferent responses dilate or contract multiplicatively according to
the speed ratio (Fig. 4C; Fig. S6), and spike trains are considerably

A B C

D

E

Fig. 1. Spatial hypothesis. (A) Surface microstructure (profilometry) of four
texture patches. (B) Spatial pattern of activation (spatial event plots; darker
colors indicate stronger neural responses) averaged over all of the SA1 affer-
ents in our sample (spatially aligned across afferents). For coarser textures,
such as embossed dots and hucktowel, the spatial structure of the stimulus is
well preserved. For finer textures, such as nylon and chiffon, evoked responses
are not spatially structured. SEPs are normalized for firing rate to highlight
their spatial structure. (C) Average spike rate of SA1 afferents for 12 of the 55
textures that spanned the range from fine to coarse, with textures grouped by
roughness from finest to roughest. (As there is no objective measure of
coarseness, textures were sorted by perceived roughness.) SA1 afferents pro-
duce robust responses only to coarse textures. (D) SD of the power spectra of
the SEPs derived from SA1 afferent responses, a measure of spatial patterning.
SA1 responses to coarse textures are significantly spatially patterned, whereas
those for fine textures are not. Asterisks denote SDs that are significantly
different from those expected by chance. (E) Mean correlations between SA1
spatial patterning (SEPs) and surface microstructure. The spatial structure of
coarse textures is faithfully reflected in the spatial pattern of activation across
SA1 afferents, whereas the structure of fine textures is not.
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more similar to each other when warped by the speed ratio than
when warped by other factors [t tests with Bonferroni correction,
t(21) = 4.2, t(19) = 5.8, and t(9) = 4.5 for SA1, RA, and PC
fibers, respectively, P < 0.05]. For example, a spike train evoked
by a given texture scanned at 80 mm/s is most similar to a spike
train evoked by that same texture at 40 mm/s when the former is
dilated by a factor of 2. Note that, at this warping factor, the two
spike trains are recorded over the same spatial extent of the
texture. In fact, the temporal structure is sufficiently conserved
that textures can be reliably classified across speeds when
responses are appropriately time-warped. Indeed, textures were
classified with 89% accuracy based on the responses of small
afferent populations when spike trains obtained at 80 mm/s were
compared with spike trains obtained at 120 mm/s and dilated by
a factor of 1.5 (Fig. 4D; performance was lower, 62%, when
matching responses obtained at 40 mm/s, a decrement that is
reflected in their perceptual discriminability at this speed). That
texture-elicited spike patterns scale with scanning speed is sur-
prising given that they do not simply reflect the spatial structure
of the stimulus, but rather the skin response to the stimulus (10).
Given the systematic effect of scanning speed on afferent
responses, perceptual invariance can be achieved by integrating
temporal spiking patterns with the available cutaneous in-
formation about scanning speed (21).

Linking Neural Responses to Perception. An important test of
a neural coding hypothesis is the establishment of a relationship
between the neural response and perception (22). Having shown
that temporal spiking patterns convey information about texture,
we examined whether these could account for perceptual judg-
ments of surface texture. The most salient perceptual dimension
of texture is roughness (23), which is thought to depend on
a spatial mechanism. Specifically, the perceived roughness of
gratings and dot patterns is well predicted by the spatial variation
in SA1 afferents (1–4). That is, to the extent that the response to
such surfaces is homogenous over the activated SA1 population,
the surface will be perceived as smooth; to the extent that the
response is spatially inhomogeneous, the surface will be per-
ceived as rough. Testing the spatial hypothesis with our diverse
set of surfaces, we found that this coding mechanism does not
generalize to more finely textured surfaces. Spatial variation in
SA1 responses is a relatively poor predictor of perceived roughness

(R2 = 0.64), particularly for fine textures (R2 = 0.35 if dot patterns
and gratings are excluded); indeed, textures that yield comparable
spatial variation differ up to eightfold in perceived roughness (Fig.
5A). In contrast, the temporal variation in spiking responses (2),
i.e., the degree to which the responses of individual afferents are
modulated in time, provides a better fit to the roughness judg-
ments, both for RA (R2 = 0.88; Fig. 5B) and PC afferents (R2 =
0.76; Fig. 5C). Importantly, the predictions of the temporal
mechanism are still high when the coarsest textures are excluded
(R2 = 0.77 and 0.63 for RA and PC afferents, respectively). In
fact, spatial variation in SA1 afferents and temporal variation
in RA and PC afferents all contribute significantly to perceived
roughness across the range of textures tested [overall R2 =
0.95; ΔR2 F-test: P < 0.001 for all three predictors, F(1,50) =
13.7, 63.3, and 45.6, with standardized regression coefficients of
0.24, 0.45, and 0.39, for SA1 spatial variation, RA temporal vari-
ation, and PC temporal variation, respectively; Fig. 5D]. In sum-
mary, texture perception relies on both a spatial mechanism
(dominant for coarse textures) and a temporal mechanism (dom-
inant for fine textures) and is mediated by all three afferent classes.

Discussion
Two mechanisms underlie the representation of texture in the
peripheral nerve: a spatial one and a temporal one, which, in
combination, afford us a wide range of tangible textures. Indeed,
as previously shown (1–4), larger textural features (on the order
of millimeters) are encoded spatially in the responses of SA1
afferents. Here, we show for the first time that finer features are
encoded temporally in the responses of RA and PC afferents.
Textures that exclusively consist of coarse or fine features will
rely on only one of these mechanisms, but textures featuring
a range of element sizes will require both. Of the two codes, the
temporal one is clearly dominant for our set of natural textures.
As a point of reference, if dot patterns and gratings are excluded,

A B C

Fig. 2. Responses of one PC afferent to repeated presentations of three
textures. (A) Surface microstructure of the three textures. (B) Spike trains
elicited over 42 presentations of each texture, with the texture patch pro-
gressively displaced along the axis orthogonal to the scanning direction. (C)
Power spectrum of the neural response elicited on each trial. Afferent
responses to these textures are highly repeatable and temporally patterned
along the scanning direction, but there is little to no discernible spatial
structure along the orthogonal axis.

A

B

C

E

D

Fig. 3. Temporal hypothesis. (A) Average spike rate of PC afferents evoked
by 12 of the 55 textures (same textures as in Fig. 1 C–E). PC afferents respond
robustly to all textures. (B) SD of the power spectrum derived from PC spike
trains. PC responses are significantly temporally patterned for all 12 textures.
(C) Mean correlations between the power spectra of skin vibrations, mea-
sured using a laser Doppler vibrometer, and those of the responses of in-
dividual afferent PC fibers. The temporal structure of PC responses matches
that of skin vibrations. (D) Average correlations between vibratory spectra
and RA (blue) and PC (orange) population response spectra. The temporal
structure of PC responses matches that of skin vibrations across the range of
textures, whereas the temporal structure of RA responses matches that of
skin vibrations predominantly for coarse textures. (E) Examples of power
spectral densities for skin vibrations (black) and PC population responses
(orange) for three fine textures.
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SA1 responses convey almost no information about the textures
in our set, nor do they account for perceptual judgments of
roughness. The temporal mechanism is therefore essential over
a wide range of feature sizes. Furthermore, dot patterns and
gratings differ from many textures in that they fall at the border
between texture and shape, and their spatial layout is percep-
tually available (and essential in the case of Braille reading).
Thus, the spatial image conveyed by SA1 afferents may play
a more important role in the perception of shape than it does in
the perception of texture, to the extent that these two stimulus
properties are distinct. In fact, information about shape is not
only conveyed in the spatial response of SA1 (and to some ex-
tent) RA afferents, but also in their first spike latencies, sug-
gesting that shape perception may also rely on rate- and timing-
based codes (24, 25). Note, however, that these two temporal
codes—one based on first spike latencies and the other on
temporal spiking patterns—likely involve different decoding
mechanisms in upstream structures.
The role of RA and PC afferents in texture perception con-

stitutes a deviation from their commonly assigned functional roles.
In particular, PC fibers, which were attributed the sole function of
mediating the perception of distal events during tool use (26), are
now ascribed a second, arguably more important role. Moreover,
as texture-induced surface waves travel along the finger onto the
palm (18) and elicit measurable vibrations even at the wrist (27),
PC afferents with receptive fields centimeters removed from the
contact area respond to palpated textures. Thus, texture process-
ing relies not only on fingertip deformations over the contact area
(which activate SA1 fibers), but also on the transduction of skin

vibrations at locations remote from the contact site, which leads to
a considerable amplification of the texture signal (18).
The somatosensory system is typically considered to be a spa-

tial sense, one that draws strong analogies with the visual system
(28–30). The extraction of information from oscillations of the
somatosensory epithelium implies a complementary mode of
processing for the primate somatosensory system, one that draws
analogies with the auditory system (31) and with the vibrissal
system of rodents (32). Indeed, we show that skin oscillations are
transduced into patterns of afferent spiking that reflect the fre-
quency composition of these oscillations. Furthermore, despite
the fact that these temporal patterns scale in time with changes
in speed, the resulting percept is robust to these changes, a per-
ceptual constancy that may rely on neural mechanisms similar to
those that mediate (auditory) timbre constancy (33). That spatial
and temporal mechanisms contribute to texture perception raises
the question how such disparate representational schemes are
integrated in cortex (34, 35) to yield a unitary percept.

Materials and Methods
Stimuli. Textured surfaces were presented to the fingertips of both humans
(vibrometry, psychophysics) and anesthetized macaques (neurophysiology)
using a custom-built rotating drum stimulator similar to those used in pre-
vious studies (36) but larger and more precise. Textured strips (2.5 cm wide ×
16 cm in scanning direction) were wrapped around an acrylic drum (25.4 cm
in diameter and 30.5 cm in length). In total, 55 different textures were
presented, including gratings (height: 0.74 mm) and tetragonal arrays of
embossed dots (height: 0.74 mm, diameter: 0.5 mm) created from a photo-
sensitive polymer (Printight, Toyobo Co.), as well as finer, more naturalistic
textures such as fabrics and sandpapers. Textures were presented with
a force of 50 ± 10 × g and a speed of 80 ± 0.1 mm/s. To examine the effects
of scanning speed on the neural responses, we also collected data at 40
and 120 mm/s. On each trial, the drum began to rotate and was lowered
onto the fingertip until the desired force was achieved. We only consider

A B

DC

Fig. 4. Discriminating textures based on temporal patterning. (A) Mean
classification performance over all 55 textures based on the ISI distributions
of the responses of individual SA1 (green), RA (blue), and PC (orange)
afferents (chance level is ∼1.8%). Shaded areas denote the SEM across
afferents. Individual PC afferents convey the most texture information and
do so at a temporal resolution of ∼2 ms. (B) Population classification per-
formance for textures grouped into quartiles according to their perceived
roughness for the three afferent classes at their respective optimal temporal
resolutions. Error bars denote the SEM across all textures in each roughness
quartile. Although SA1 afferents perform poorly for smooth textures, clas-
sification performance based on RA and PC responses is consistently high
across the range of tangible textures. (C) Estimate of the proportion of co-
incident spikes when afferent responses at 40 and 120 mm/s are contracted
or dilated and aligned to the responses at 80 mm/s. Error bars denote the
SEM across afferents. Insets illustrate a hypothetical spike pattern at three
warping factors: The top spike trains are warped according to speed and
compared with the bottom spike train, elicited at the reference speed (80
mm/s); coincident spikes are highlighted in purple. When the amount of
contraction or dilation corresponds to the ratio of the speeds, afferent
responses evoked by a given texture are similar. In other words, increasing
the scanning speed preserves the temporal patterning in afferent responses
but contracts it temporally in proportion to the speed. (D) Population clas-
sification performance across speeds after warping spike trains collected at
40 (solid bars) and 120 (hatched bars) to 80 mm/s.

A B

C D

Fig. 5. Linking neural responses to perception. (A) SA1 spatial variation
plotted against perceived roughness ratings. Green markers denote
embossed dot patterns and gratings and orange markers the remaining
textures. Error bars denote SEMs across subjects and neurons along the y and
x axes, respectively. The line denotes the line of best fit. SA1 spatial variation
is a poor predictor of roughness. (B and C) Temporal variation for RA and PC
afferents, respectively, plotted against perceived roughness. (D) Combined
SA1 spatial variation, and RA and PC temporal variation plotted against
perceived roughness. All three predictors contribute significantly to per-
ceived roughness. SEs of the predictors were computed using bootstrapping
(Materials and Methods). The solid line indicates unity. Predicted roughness
values match the observed ones almost perfectly.
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neuronal responses during the steady-state period when both desired speed
and force were achieved. Textures were presented for 2.4, 1.2, or 0.8 s at 40,
80, and 120 mm/s, respectively, and the interstimulus interval was 3.5 s to
prevent afferent adaptation (37, 38). A subset of 12 textures was presented
in the SEP protocol, described below.

Psychophysics. Eight subjects (6 males and 2 females; ages 18–31 y) provided
informed consent and participated in this study. Subjects sat with the left
arm supinated and resting on a support under the drum. Stimuli were pre-
sented to the left index fingerpad of each subject. On each trial, the subject
was presented with 1 of 55 textures and produced a rating in proportion to
its perceived roughness, where a rating of zero denoted a perfectly smooth
surface. Each texture was presented once in each of six experimental blocks;
ratings were normalized by the mean of each block and averaged, first
within and then across subjects. Ratings of roughness were highly consistent
across subjects (intersubject correlation: 0.91 ± 0.03, mean ± SD). In this
study, roughness judgments were used as a proxy for coarseness, for which
there is no objective measure. Indeed, although profilometry certainly
provides information about the spatial layout of a texture, it is difficult to
translate 3D structure into a measure of coarseness: the material of which
a surface is made will play a critical role in determining how its textural
elements interact with the skin. All procedures were approved by the In-
stitutional Review Board of the University of Chicago.

Neurophysiology. Extracellular single-unit recordings were collected from the
median and ulnar nerves innervating the distal fingertips of six Rhesus mac-
aques (Macaca mulatta) using established procedures (11, 12). Anesthesia was
maintained using isoflurane, whose effect on mechanoreceptive responses we
have shown to be equivalent to that of pentobarbital (39), the anesthetic
agent that has been used in most if not all previous studies investigating
mechanoreceptive afferents of primates. Data were collected from 15 SA1
fibers, 13 RA fibers, and 7 PC fibers. Units were classified as SA1, RA, or PC
using standard methods (12). Each texture was presented at least twice at each
scanning speed. All procedures complied with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the
Animal Care and Use Committee of the University of Chicago.

Spatial Event Plots. Data amenable to SEP analysis were obtained for only
a subset of 12 textures because this experimental protocol is very time
consuming. Data for SEPs were obtained by repeatedly passing the stimulus
over the receptive field of a single neuron, at 80 mm/s, with a shift of 500 μm
along the axis of rotation between each presentation (14). In this way,
a different band of the same texture passes over the receptive field with
each successive presentation. Because afferent responses are relatively sim-
ilar across afferents of a given type, spike trains elicited in a single mecha-
noreceptive afferent by different portions of the stimulus can be used to
estimate the spatial pattern of activation elicited by the stimulus across the
afferent population (14). Each texture was presented twice at 21 different
locations along the axis of rotation, creating an SEP that was 1 cm wide. The
SEPs shown in Fig. 1B were created by first aligning and then averaging the
SEPs from all SA1 afferents. SEPs were aligned by finding the 8 × 8-mm
section with the maximum correlation.

SD of the Power Spectrum.With this analysis, we sought to gauge the extent to
which afferent responses exhibit periodic structure. In otherwords, is the neural
response more periodic than would be expected by chance? All of the textures
tested in this analysis were themselves periodic, so, to the extent that the
neuronal response reflected the spatial structure of the stimulus, the response
would exhibit periodic structure. We tested whether the spatial pattern of
activationwas periodic by performing the analysis on the power spectra of SEPs
andwhether the temporal patternof activationwas periodic by performing the
analysis on power spectra of individual spike trains. Both analyses were carried
out on the same data, namely the responses used to compute the SEPs: each
row corresponds to the response to one scan across the texture, with different
rows corresponding to responses evoked by spatially displaced scans.
Spatial analysis. First, we computed the 2D power spectrum of each 10 ×
10-mm SEP (binned in 0.5 × 0.5-mm bins) and averaged the power spectrum
across trials for each texture/afferent pair. Second, we collapsed the spectra
across the scanning direction to isolate structure that could only be represented
spatially (as opposed to temporally), namely structure along the axis per-
pendicular to the scanning direction. We then computed the SD of each
resulting power spectrum. To compute the reliability of the SD, we per-
formed a bootstrapping analysis. On each of 500 iterations, we shuffled
the rows to eliminate the spatial structure in the response and recomputed
the SD based on the shuffled SEP using the approach described above. The

resulting distribution of SDs constituted a null distribution (of SDs obtained
in the absence of spatial structure), to which we could compare measured
values to gauge their statistical reliability.
Temporal analysis. First, we computed the 1D power spectrum (along the
scanning direction) of each spike train used to generate the SEPs and then
computed the mean across presentations for each texture/afferent pair
(treating each row as an independent and equivalent observation). For this
analysis, we use 1.25-ms (0.1-mm) bins. Second, we computed the SD of each
resulting mean spectrum. In the bootstrapping analysis, we shuffled the
(binned) spike times of the responses evoked in each repetition (500 times)
and recomputed the SD based on the shuffled spike trains using the approach
described above. The resulting distribution of SDs constituted a null distri-
bution (of SDs obtained in the absence of temporal structure), to which we
could compare measured values to gauge their statistical reliability.

Texture Classification from Neural Data. With these analyses, we wished to
determine the extent to which textures can be distinguished based on the
spiking behavior of afferent populations. To this end, we divided the neural
responses recorded during the steady-state period into two consecutive time
windows of 500 ms. The underlying assumption was that afferent responses
to a given texture should be consistent across time. We then calculated the
distance (dissimilarity) between the response evoked by each texture during
thefirst timewindow and the response evoked by every texture in the second
time window (measures of dissimilarity are described below). After calcu-
lating pairwise distances between the responses evoked by different textures,
we identified which of the 55 textures resulted in the minimum distance. If
the response to one texture, measured in the first window, was nearest to the
response to the same texture, measured in the second window, the classi-
fication was correct; otherwise, the algorithm misclassified the texture. We
used two different measures of neural response distance. First, we compared
the interspike interval (ISI) distributions (using a variable bin size) of two spike
trains by computing the cost of transforming one into the other. ISIs,
spanning the range from 0 to 250 ms, were placed into a varying number of
bins, from 1 to 512 bins, to vary the temporal resolution from rate to a res-
olution of ∼0.5 ms by recursively splitting bins in half. Distances between
pairs of ISI histograms were then determined by calculating the minimum
cost to transform one histogram into another, by adding, deleting, and
moving spikes between bins (at unit cost for each operation). Second, we
used a spike train distance metric (Dspike) that calculates the dissimilarity
between two spike trains by computing the cost it takes to transform one
spike train into another, with a cost of 1 for adding or deleting a spike and
a variable cost per unit time for shifting a spike (40). This variable cost
determines the temporal resolution of the analysis: ranging from submilli-
second to spike count. Spike trains were aligned by computing distances at
a variety of different offsets and then choosing the minimum distance to
maximally align the phase of the two responses. Although Dspike is computed
based on the precise timing of individual spikes, the ISI-based method works
by using general statistics of spike timing over a given time window. We
found that both methods agreed well in overall classification performance
and yielded the same optimal temporal resolution, at which the best per-
formance is achieved (see Fig. 4A for results from the ISI-based classification
and Fig. S7 for those based on Dspike). To classify textures based on the
population response, we summed Dspike across afferents at their optimal
temporal resolution for each texture pair before finding the texture that
yielded the minimum distance (13).

Scaling of Spike Trains According to Scanning Speed. To what extent is the
temporal patterning in afferent responses preserved across different scan-
ning speeds? To address this question, we scaled the ISIs of spike trains
collected at 40 and 120mm/s to a number of different speeds vi (ranging from
30 to 150 mm/s) by multiplying each ISI by the ratio of the actual speed vm
(40 or 120 mm/s) to vi. For example, we quadrupled ISIs obtained at 120 mm/s
to generate a hypothetical spike train evoked at 30 mm/s. We then com-
pared these time-warped spike trains with those collected at the reference
speed, vr (80 mm/s), by counting the maximum number of coincident spikes
(using 4-ms-wide bins) across temporal offsets (to eliminate any discrepancy
due to absolute phase, which was not necessarily consistent across speeds;
that is, different albeit overlapping extents of the texture were presented at
different speeds). To correct for any speed-dependent biases and to focus on
fine temporal patterns (on the order of milliseconds) rather than coarse
ones, we counted the number of coincident spikes for artificial spike trains,
generated from the original ones by scrambling ISIs within 200-ms-long time
windows. (One artificial spike train was generated for each measured spike
train.) Counts obtained from scrambled ISIs provided an estimate of the
number of coincident spikes expected by chance given the coarse temporal
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structure of the response. We then divided the number of coincident spikes
above chance as found in the warping analysis by the number of coincident
spikes above chance when comparing spike trains from single trials collected
at the reference speed of 80 mm/s. If spike trains collected at different
speeds are time-warped versions of each other, our measure exhibits a peak
at the reference speed. If, however, spike patterns do not change consis-
tently with scanning speed, but are constant regardless of speed, peaks at
40 and 120 mm/s should be observed. Classification across speeds was per-
formed by first warping spike trains collected at 40 and 120 to 80 mm/s and
then computing Dspike between the original spike trains collected at 80 mm/s
and the warped ones.

Spatial Variation. To measure the spatial variation in SA fibers, we replicated
the exact methods of Connor and Johnson (2). Specifically, SEPs were created
by counting the number of whole and fractional ISIs within each 0.5-mm
bin. Spatial variation was estimated by convolving a 2D Gabor filter f with
each SEP:

fðx,yÞ= sin
�
2π½x · sinðθÞ− y · cosðθÞ�

λ
+φ

�
· exp

�
−
�
x2 + y2

�
2σ2

�
,

where (x,y) is the spatial position, θ is the orientation of the sinusoidal
component of the filter, λ is the spatial period of the filter, φ is the phase of
the sinusoidal component relative to the center of the filter, and σ is the SD
of the 2D Gaussian component of the filter. Spatial variation was calculated
at a range of rotations and translations of the Gabor filter across the field of
the SEP and then averaged to obtain the overall spatial variation. We
implemented the analysis and optimal parameters used by Connor and
Johnson (λ = 2.8 mm, σ = 1.12 mm) (2). Because we wished to extend this
analysis to all textures, spatial variation was also computed based on
reconstructed SEPs. Specifically, the SEP for each texture was generated by
sampling rows with replacement from the afferent responses to that tex-
ture. The spatial variation was then computed as described above. We ver-
ified that these estimated SEPs yielded equivalent spatial variation values by

comparing the spatial variation based on actual and estimated SEPs for the
textures that were run in both protocols. For those 12 textures, we found
that the correlation between the two quantities was 0.95, so we used spatial
variation based on reconstructed SEPs in the analyses shown in Fig. 5. We
also verified that the same conclusions were reached when only the 12
textures run on the SEP protocols were used (Fig. S8).

Temporal Variation. Temporal variation was estimated by convolving a 1D
Gabor filter f with the spike trains evoked during individual presentations of
each textured surface, binned in 4-ms windows:

fðtÞ= sin
�
2πt
λ

+φ

�
· exp

�
−t2

2σ2

�
:

Filter parameters were optimized for each afferent class individually and
were found to be similar for RAs (λ = 2,857 ms, σ = 14.2 ms, φ = 0.1°) and PCs
(λ = 1,785 ms, σ = 14 ms, φ = 0.3°). Note that large values of λ combined with
small values of φ yield symmetrical filters with one negative component
followed by a positive one, the combined width of which is determined by σ.

Composite Code for Roughness.We calculated a predicted roughness value for
each texture using a multiple regression model of the values for each of the
three codes. SEs of predicted roughness were computed from bootstrapped
values across cells.
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